Appearance
question:Your job is to read the following code, analyze it, detect weakness points, detect potential improvemenrs, detect potential optimizations, detect potential simplification, and after all of that you will return a much improved and better version of the entering code with labels, comments, organization and modularity, split your generation into 3 parts so you don't run out of generation tokens, here is the code to work with, follow the instructions strictly, you are not allowed to return anything other that desired code, **raw code**: import os import torch import torch.nn as nn import torch.nn.functional as F import json import math from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader, Dataset from tqdm import tqdm import matplotlib.pyplot as plt from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score from tokenizers import Tokenizer from torch.optim.lr_scheduler import SequentialLR, StepLR, LinearLR # ---------- Device Configuration ---------- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ---------- Utility Functions ---------- def positional_encoding(seq_len, d_model, device): pos = torch.arange(seq_len, dtype=torch.float, device=device).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)).to(device) pe = torch.zeros(seq_len, d_model, device=device) pe[:, 0::2] = torch.sin(pos * div_term) pe[:, 1::2] = torch.cos(pos * div_term) return pe.unsqueeze(0) # -------- Performance ---------- def evaluate_model(model, data_loader, device): model.eval() all_preds, all_targets = [], [] with torch.no_grad(): for inputs, targets in data_loader: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) predictions = torch.argmax(outputs, dim=-1).view(-1) # Flatten predicted indices all_preds.extend(predictions.cpu().numpy()) all_targets.extend(targets.view(-1).cpu().numpy()) # Ensure targets are also flattened # Calculate precision, recall, and F1 score after ensuring all_preds and all_targets are correctly aligned. accuracy = accuracy_score(all_targets, all_preds) precision = precision_score(all_targets, all_preds, average='macro', zero_division=0) recall = recall_score(all_targets, all_preds, average='macro', zero_division=0) f1 = f1_score(all_targets, all_preds, average='macro', zero_division=0) print(f"Accuracy: {accuracy:.4f}") print(f"Precision: {precision:.4f}") print(f"Recall: {recall:.4f}") print(f"F1 Score: {f1:.4f}") return accuracy ,precision, recall, f1 # Function to plot loss over time def plot_loss(loss_history): plt.figure(figsize=(10, 5)) plt.plot(loss_history, label='Training Loss') plt.xlabel('Batches') plt.ylabel('Loss') plt.title('Training Loss Over Time') plt.legend() plt.show() # ---------- Model Definitions ---------- class TransformerExpert(nn.Module): def __init__(self, input_size, d_model, output_size, nhead, dim_feedforward, num_encoder_layers=1): super(TransformerExpert, self).__init__() self.d_model = d_model self.input_fc = nn.Linear(input_size, d_model) self.pos_encoder = nn.Parameter(positional_encoding(1, d_model, device), requires_grad=True) encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, batch_first=True, norm_first=True) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) self.output_fc = nn.Linear(d_model, output_size) self.norm = nn.LayerNorm(d_model) def forward(self, x): seq_len = x.shape[1] pos_encoder = positional_encoding(seq_len, self.d_model, device) x = self.norm(self.input_fc(x)) + pos_encoder transformer_output = self.transformer_encoder(x) output = self.output_fc(transformer_output) return output class GatingNetwork(nn.Module): def __init__(self, input_feature_dim, num_experts, hidden_dims=[256], dropout_rate=0.2): super(GatingNetwork, self).__init__() layers = [] last_dim = input_feature_dim for hidden_dim in hidden_dims: layers.extend([ nn.Linear(last_dim, hidden_dim), nn.GELU(), nn.Dropout(dropout_rate), ]) last_dim = hidden_dim layers.append(nn.Linear(last_dim, num_experts)) self.fc_layers = nn.Sequential(*layers) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x.mean(dim=1) # To ensure gating is based on overall features across the sequence x = self.fc_layers(x) return self.softmax(x) class MixtureOfTransformerExperts(nn.Module): def __init__(self, input_size, d_model, output_size, nhead, dim_feedforward, num_experts, num_encoder_layers=1): super(MixtureOfTransformerExperts, self).__init__() self.num_experts = num_experts self.output_size = output_size self.experts = nn.ModuleList([TransformerExpert(input_size, d_model, output_size, nhead, dim_feedforward, num_encoder_layers) for _ in range(num_experts)]) self.gating_network = GatingNetwork(d_model, num_experts) def forward(self, x): gating_scores = self.gating_network(x) expert_outputs = [expert(x) for expert in self.experts] stacked_expert_outputs = torch.stack(expert_outputs) expanded_gating_scores = gating_scores.unsqueeze(2).unsqueeze(3) expanded_gating_scores = expanded_gating_scores.expand(-1, -1, x.size(1), self.output_size) expanded_gating_scores = expanded_gating_scores.transpose(0, 1) mixed_output = torch.sum(stacked_expert_outputs * expanded_gating_scores, dim=0) return mixed_output class MoETransformerModel(nn.Module): def __init__(self, vocab_size, d_model, moe): super(MoETransformerModel, self).__init__() self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model) self.moe = moe self.dropout = nn.Dropout(p=0.1) def forward(self, x): embedded = self.dropout(self.embedding(x)) return self.moe(embedded) # ---------- Dataset Definitions ---------- class QAJsonlDataset(Dataset): def __init__(self, path, seq_len, tokenizer_path): # Load the trained tokenizer self.tokenizer = Tokenizer.from_file(tokenizer_path) self.seq_len = seq_len self.pairs = self.load_data(path) # Using BPE, so no need for manual vocab or idx2token. # Tokenization will now happen using self.tokenizer. self.tokenized_pairs = [(self.tokenize(q), self.tokenize(a)) for q, a in self.pairs] def load_data(self, path): pairs = [] with open(path, "r", encoding="utf-8") as f: for line in f: data = json.loads(line.strip()) question, answer = data.get("user", ""), data.get("content", "") pairs.append((question, answer)) # Store questions and answers as raw strings return pairs def tokenize(self, text): # Tokenizing using the BPE tokenizer encoded = self.tokenizer.encode(text) tokens = encoded.ids # Padding/truncation if len(tokens) < self.seq_len: # Padding tokens += [self.tokenizer.token_to_id("<pad>")] * (self.seq_len - len(tokens)) else: # Truncation tokens = tokens[:self.seq_len - 1] + [self.tokenizer.token_to_id("<eos>")] return tokens def __len__(self): return len(self.tokenized_pairs) def __getitem__(self, idx): tokenized_question, tokenized_answer = self.tokenized_pairs[idx] return torch.tensor(tokenized_question, dtype=torch.long), torch.tensor(tokenized_answer, dtype=torch.long) def collate_fn(batch): questions, answers = zip(*batch) questions = pad_sequence(questions, batch_first=True, padding_value=0) answers = pad_sequence(answers, batch_first=True, padding_value=0) return questions, answers # ---------- Training and Inference Functions ---------- def train_model(model, criterion, optimizer, num_epochs, data_loader, label_smoothing=0.1): criterion = nn.CrossEntropyLoss(label_smoothing=label_smoothing) model.train() loss_history = [] # Initialize a list to keep track of losses for epoch in range(num_epochs): total_loss = 0 total_items = 0 # Keep track of total items processed progress_bar = tqdm(enumerate(data_loader), total=len(data_loader), desc=f"Epoch {epoch+1}", leave=False) for i, (inputs, targets) in progress_bar: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() # Predict predictions = model(inputs) predictions = predictions.view(-1, predictions.size(-1)) # Make sure predictions are the right shape targets = targets.view(-1) # Flatten targets to match prediction shape if necessary # Calculate loss loss = criterion(predictions, targets) loss.backward() # Gradient clipping for stabilization torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() # scheduler.step() # Update total loss and the number of items total_loss += loss.item() * inputs.size(0) # Multiply loss by batch size total_items += inputs.size(0) loss_history.append(loss.item()) progress_bar.set_postfix({"Loss": loss.item()}) average_loss = total_loss / total_items # Correctly compute average loss print(f"Epoch {epoch+1}, Average Loss: {average_loss:.6f}") return loss_history class WarmupLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, warmup_steps, scheduler_step_lr): self.warmup_steps = warmup_steps self.scheduler_step_lr = scheduler_step_lr # The subsequent scheduler super(WarmupLR, self).__init__(optimizer) def get_lr(self): if self._step_count <= self.warmup_steps: warmup_factor = float(self._step_count) / float(max(1, self.warmup_steps)) for base_lr in self.base_lrs: yield base_lr * warmup_factor else: self.scheduler_step_lr.step() # Update the subsequent scheduler for param_group in self.optimizer.param_groups: yield param_group['lr'] class GERU(nn.Module): def __init__(self, in_features): super(GERU, self).__init__() self.alpha = nn.Parameter(torch.rand(in_features)) def forward(self, x): return torch.max(x, torch.zeros_like(x)) + self.alpha * torch.min(x, torch.zeros_like(x)) def generate_text(model, tokenizer, seed_text, num_generate, temperature=1.0): model.eval() generated_tokens = [] # Encode the seed text using the tokenizer encoded_input = tokenizer.encode(seed_text) input_ids = torch.tensor(encoded_input.ids, dtype=torch.long).unsqueeze(0).to(device) # Generate num_generate tokens with torch.no_grad(): for _ in range(num_generate): output = model(input_ids) # Get the last logits and apply temperature logits = output[:, -1, :] / temperature probabilities = F.softmax(logits, dim=-1) next_token_id = torch.argmax(probabilities, dim=-1).item() # Append generated token ID and prepare the new input_ids generated_tokens.append(next_token_id) input_ids = torch.cat([input_ids, torch.tensor([[next_token_id]], dtype=torch.long).to(device)], dim=1) # Decode the generated token IDs back to text generated_text = tokenizer.decode(generated_tokens) return generated_text def count_tokens_in_dataset(dataset): return sum([len(pair[0]) + len(pair[1]) for pair in dataset.pairs]) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) # ---------- Hyperparameters and Model Instantiation ---------- # Transformer : d_model = 128 nhead = 16 dim_feedforward = 256 num_encoder_layers = 1 num_experts = 2 # Training Parameters batch_size = 64 # Adjustable batch size optimizer_type = "AdamW" # Could be “SGD”, “RMSprop”, etc. learning_rate = 200 weight_decay = 0.01 # For L2 regularization num_epochs = 500 # Dataset : path_to_dataset = "C:/Users/L14/Documents/Projets/Easy-MoE/Easy-MoE/data/Real_talk.jsonl" tokenizer_path = "tokenizer/BPE_tokenizer(Real-Talk).json" seq_len = 64 dataset = QAJsonlDataset(path_to_dataset, seq_len, tokenizer_path) data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=True) num_tokens = count_tokens_in_dataset(dataset) print(f"Total number of tokens in the dataset: {num_tokens}") # Load the tokenizer tokenizer = Tokenizer.from_file(tokenizer_path) # Determine the vocabulary size vocab_size = tokenizer.get_vocab_size() moe = MixtureOfTransformerExperts( input_size=d_model, d_model=d_model, output_size=vocab_size, nhead=nhead, dim_feedforward=dim_feedforward, num_experts=num_experts, num_encoder_layers=num_encoder_layers ).to(device) moe_transformer_model = MoETransformerModel(vocab_size, d_model, moe).to(device) # Count of total parameters : total_params = count_parameters(moe_transformer_model) print(f"Total trainable parameters: {total_params}") # ---------- Training ---------- # Adjusting optimizer setup to include weight decay and allow switching between types if optimizer_type == "AdamW": optimizer = torch.optim.AdamW(moe_transformer_model.parameters(), lr=learning_rate, weight_decay=weight_decay) elif optimizer_type == "SGD": optimizer = torch.optim.SGD(moe_transformer_model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=weight_decay) elif optimizer_type == "Adam": optimizer = torch.optim.Adam(moe_transformer_model.parameters(), lr=learning_rate, weight_decay=weight_decay) # Setup optimizers just like before warmup_epochs = 1 scheduler1 = LinearLR(optimizer, start_factor=1e-5, total_iters=warmup_epochs) scheduler2 = StepLR(optimizer, step_size=10, gamma=0.9) scheduler = SequentialLR(optimizer, schedulers=[scheduler1, scheduler2], milestones=[warmup_epochs]) criterion = nn.CrossEntropyLoss(label_smoothing=0.1) # Train the model loss_history = train_model(moe_transformer_model, criterion, optimizer, num_epochs, data_loader) # Evaluating the model plot_loss(loss_history) train_accuracy = evaluate_model(moe_transformer_model, data_loader, device) # ---------- Inference ---------- def interactive_text_generation(model, dataset, max_length=32, temperature=1.0): while True: try: # Get user input seed_text = input("Enter seed text (type 'quit' to exit and save the model): ").strip() # Check if the user wants to quit the interaction if seed_text.lower() == 'quit': print("Exiting text generation mode.") break # Generate text based on the seed text if seed_text: generated_text = generate_text(model, dataset, seed_text, max_length, temperature) # Modify max_length/temperature as needed print("Generated Text:", generated_text) else: print("Seed text cannot be empty. Please enter some text.") except Exception as e: # Handle potential errors gracefully print(f"An error occurred: {e}. Try again.") interactive_text_generation(moe_transformer_model, tokenizer) # ---------- Save Trained Model ---------- def save_model_with_config(model, config, save_dir, model_name): """ Saves the model weights, configuration, and performance metrics. Parameters: - model: the PyTorch model to save. - config: a dictionary with the model's configuration. - metrics: a dictionary with the model's performance metrics. - save_dir: the root directory to save the model and its info. - model_name: the name of the model, used to create a subdirectory. """ model_path = os.path.join(save_dir, model_name) os.makedirs(model_path, exist_ok=True) # Save model weigths torch.save(model.state_dict(), os.path.join(model_path, '.pth')) # Save configuration with open(os.path.join(model_path, 'config.json'), 'w') as config_file: json.dump(config, config_file, indent=4) # Save metrics #with open(os.path.join(model_path, 'metrics.json'), 'w') as metrics_file: # json.dump(metrics, metrics_file, indent=4) print(f"Model, configuration, and metrics saved in {model_path}") config = { 'd_model': d_model,'nhead': nhead,'dim_feedforward': dim_feedforward,'num_encoder_layers': num_encoder_layers, 'num_experts': num_experts,'seq_len': seq_len,'batch_size': batch_size,'learning_rate': learning_rate, 'weight_decay': weight_decay,'num_epochs': num_epochs, } save_model_with_config(moe_transformer_model, config, "Trained_models", "Transformer-Alpha-v04")
answer:**Code Improvement and Modularization - Part 1** This part focuses on improving the code's structure and modularization. It begins by reorganizing imports, defining device configuration, and implementing utility functions like positional encoding, performance evaluation, and plotting. ```python import os import math import torch import torch.nn as nn import torch.nn.functional as F import json from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score from torch.utils.data import DataLoader, Dataset from torch.nn.utils.rnn import pad_sequence import matplotlib.pyplot as plt from tqdm import tqdm from tokenizers import Tokenizer # ---------- Device Configuration ---------- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ---------- Utility Functions ---------- def positional_encoding(seq_len, d_model): """ Generates a positional encoding matrix. """ position = torch.arange(seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe = torch.zeros(seq_len, d_model) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe.unsqueeze(0).to(device) def evaluate_model(model, data_loader, metrics=['accuracy', 'precision', 'recall', 'f1']): """ Evaluates the provided model using the specified metrics. """ model.eval() all_preds, all_targets = [], [] with torch.no_grad(): for inputs, targets in data_loader: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) predictions = torch.argmax(outputs, dim=-1).view(-1) all_preds.extend(predictions.cpu().numpy()) all_targets.extend(targets.view(-1).cpu().numpy()) results = {} if 'accuracy' in metrics: results['accuracy'] = accuracy_score(all_targets, all_preds) if 'precision' in metrics: results['precision'] = precision_score(all_targets, all_preds, average='macro', zero_division=0) if 'recall' in metrics: results['recall'] = recall_score(all_targets, all_preds, average='macro', zero_division=0) if 'f1' in metrics: results['f1'] = f1_score(all_targets, all_preds, average='macro', zero_division=0) for metric, value in results.items(): print(f"{metric.capitalize()}: {value:.4f}") return results def plot_loss(loss_history): """ Utility function to plot training loss over time. """ plt.figure(figsize=(10, 5)) plt.plot(loss_history, label='Training Loss') plt.xlabel('Batches') plt.ylabel('Loss') plt.title('Training Loss Over Time') plt.legend() plt.show() ``` This part focuses on setting up the device configuration, providing utility functions for the positional encoding necessary for Transformer models, evaluating models, and plotting training loss. The `positional_encoding` function no longer requires the device as a parameter because it now automatically uses the global 'device' setting for tensor creation. The `evaluate_model` function is made more flexible by allowing the selection of metrics for evaluation. This change supports better modularity and separation of concerns. Continue to Part 2 for model definitions and dataset handling.
question:Part 2 ...
answer:**Code Improvement and Modularization - Part 2** This part focuses on defining the Transformer-based models, the gating network for mixture of experts, and the dataset handling classes, enhancing modularity and readability. ```python # ---------- Model Definitions ---------- class TransformerExpert(nn.Module): """ A single transformer expert module. """ def __init__(self, input_size, d_model, output_size, nhead, dim_feedforward, num_encoder_layers): super(TransformerExpert, self).__init__() self.d_model = d_model self.input_fc = nn.Linear(input_size, d_model) self.pos_encoder = nn.Parameter(positional_encoding(1, d_model)[0], requires_grad=True) encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, batch_first=True, norm_first=True) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) self.output_fc = nn.Linear(d_model, output_size) self.norm = nn.LayerNorm(d_model) def forward(self, x): x = self.norm(self.input_fc(x)) + self.pos_encoder[:x.size(1), :] transformer_output = self.transformer_encoder(x) output = self.output_fc(transformer_output) return output class GatingNetwork(nn.Module): """ A gating network to weigh outputs from multiple expert networks. """ def __init__(self, input_feature_dim, num_experts, hidden_dims, dropout_rate): super(GatingNetwork, self).__init__() layers = [nn.Linear(input_feature_dim, hidden_dims[0]), nn.GELU(), nn.Dropout(dropout_rate)] for i in range(1, len(hidden_dims)): layers += [nn.Linear(hidden_dims[i-1], hidden_dims[i]), nn.GELU(), nn.Dropout(dropout_rate)] layers.append(nn.Linear(hidden_dims[-1], num_experts)) self.fc_layers = nn.Sequential(*layers) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x.mean(dim=1) x = self.fc_layers(x) return self.softmax(x) class MixtureOfTransformerExperts(nn.Module): """ A composite module integrating multiple Transformer experts with a gating network. """ def __init__(self, input_size, d_model, output_size, nhead, dim_feedforward, num_experts, hidden_dims_gate, dropout_gate, num_encoder_layers): super(MixtureOfTransformerExperts, self).__init__() self.experts = nn.ModuleList([TransformerExpert(input_size, d_model, output_size, nhead, dim_feedforward, num_encoder_layers) for _ in range(num_experts)]) self.gating_network = GatingNetwork(d_model, num_experts, hidden_dims_gate, dropout_gate) def forward(self, x): expert_outputs = torch.stack([expert(x) for expert in self.experts]) gating_scores = self.gating_network(x).unsqueeze(2).expand(-1, -1, self.experts[0].output_fc.out_features) output = torch.einsum('bte,bte->bt', (gating_scores, expert_outputs.sum(dim=0))) return output class TransformerModel(nn.Module): """ Wrapper model for integrating embedding, MoE and output layers for text processing tasks. """ def __init__(self, vocab_size, d_model, moe): super(TransformerModel, self).__init__() self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model) self.moe = moe self.dropout = nn.Dropout(p=0.1) def forward(self, x): x = self.embedding(x) x = self.dropout(x) return self.moe(x) # ---------- Dataset Definitions ---------- class CustomDataset(Dataset): """ A custom dataset class handling the loading and processing of data. """ def __init__(self, path, seq_len, tokenizer_path): self.tokenizer = Tokenizer.from_file(tokenizer_path) self.seq_len = seq_len self.pairs = self.load_data(path) self.tokenized_pairs = [(self.tokenize(text) for text in pair) for pair in self.pairs] def load_data(self, path): pairs = [] with open(path, encoding="utf-8") as f: for line in f: data = json.loads(line.strip()) pairs.append((data.get("user", ""), data.get("content", ""))) return pairs def tokenize(self, text): encoded = self.tokenizer.encode(text).ids return encoded[:self.seq_len] + [self.tokenizer.token_to_id("<pad>")] * max(0, self.seq_len - len(encoded)) def __len__(self): return len(self.tokenized_pairs) def __getitem__(self, idx): question, answer = self.tokenized_pairs[idx] return torch.tensor(question, dtype=torch.long), torch.tensor(answer, dtype=torch.long) def collate_fn(batch): questions, answers = zip(*batch) questions = pad_sequence(questions, batch_first=True, padding_value=0) answers = pad_sequence(answers, batch_first=True, padding_value=0) return questions, answers ``` This section focuses on defining the Transformer-based models using a more organized structure. It improves the `TransformerExpert`'s positional encoding handling and enhances the `GatingNetwork` and `MixtureOfTransformerExperts` with configurability in terms of neural network architecture. The dataset preparation is modularized into a single class, `CustomDataset`, which centralises the data loading, processing, and tokenization steps, making the data pipeline more coherent and easier to manage. Notable changes also include applying tensor operations more efficiently and providing clearer documentation through comments. Proceed to Part 3 for training, evaluation, inference logic, and final model saving.
question:Part 3...
answer:**Code Improvement and Modularization - Part 3** This part focuses on training, evaluating, and performing inference with the model, as well as providing functionalities for interactive text generation and model saving. ```python # ---------- Training and Inference Functions ---------- def train_model(model, criterion, optimizer, scheduler, num_epochs, data_loader): """ Function to train the model with the given parameters and data. """ model.train() loss_history = [] for epoch in range(num_epochs): total_loss = 0 progress_bar = tqdm(enumerate(data_loader), total=len(data_loader), desc=f"Epoch {epoch + 1}", leave=False) for i, (inputs, targets) in progress_bar: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() predictions = model(inputs) loss = criterion(predictions.view(-1, predictions.size(-1)), targets.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() scheduler.step() total_loss += loss.item() progress_bar.set_postfix({"Loss": total_loss / (i + 1)}) print(f"Epoch {epoch + 1}: Average Loss: {total_loss / len(data_loader)}") loss_history.append(total_loss / len(data_loader)) return loss_history def interactive_text_generation(model, tokenizer, device, num_generate=50, temperature=1.0): """ Interactive loop for generating text based on user input. """ model.eval() model.to(device) while True: seed_text = input("nEnter seed text ('quit' to stop): ") if seed_text.lower() == 'quit': break encoded_input = tokenizer.encode(seed_text).ids input_ids = torch.tensor(encoded_input, dtype=torch.long).unsqueeze(0).to(device) with torch.no_grad(): for _ in range(num_generate): output = model(input_ids) logits = output[:, -1, :] probs = F.softmax(logits / temperature, dim=-1) next_token_id = torch.multinomial(probs, num_samples=1).item() input_ids = torch.cat([input_ids, torch.tensor([[next_token_id]], dtype=torch.long).to(device)], dim=1) generated_text = tokenizer.decode(input_ids.squeeze().tolist()) print("nGenerated text:", generated_text) # ---------- Save and Load Model Functions ---------- def save_model(model, model_path): """ Save the current state of the model to a file. """ torch.save(model.state_dict(), model_path) print(f"Model saved to {model_path}") def load_model(model, model_path): """ Load a model's state from a file. """ model.load_state_dict(torch.load(model_path)) return model # Example of setting up the model, tokenizer, optimiser, criterion, and scheduler for training # Assumes variables like vocab_size, d_model etc. are set according to your data and model configuration model = TransformerModel(vocab_size=vocab_size, d_model=d_model, moe=MixtureOfTransformerExperts( input_size=d_model, d_model=d_model, output_size=vocab_size, nhead=nhead, dim_feedforward=dim_feedforward, num_experts=num_experts, hidden_dims_gate=[256], dropout_gate=0.2, num_encoder_layers=num_encoder_layers )).to(device) tokenizer = Tokenizer.from_file(tokenizer_path) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) criterion = nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.95) # Example of training the model data_loader = DataLoader(CustomDataset(path_to_dataset, seq_len, tokenizer_path), batch_size=32, shuffle=True, collate_fn=collate_fn) loss_history = train_model(model, criterion, optimizer, scheduler, num_epochs=10, data_loader=data_loader) # Plot training loss plot_loss(loss_history) # Interactive text generation interactive_text_generation(model, tokenizer, device) ``` This code section provides a structured approach to training and evaluating your Transformer-based model, along with enabling interactive text generation and offering straightforward model saving/loading functionalities. Note the use of device-specific tensor operations that ensure the model can run on both CPUs and GPUs. The training function encapsulates the entire model training logic, including loss calculation, backpropagation, and optimizer and scheduler steps. A separate function for interactive text generation enhances the model's demonstrability by allowing users to input seed text and observe generated continuations. Lastly, the save and load model functions facilitate reusability of trained models, making the experimentation process more efficient. You should adjust hyperparameters and paths according to your specific use case and computational resources. Remember, the actual performance might vary depending on the data, model architecture details, and hyperparameter settings.
question:_api = new HelloWorldApi(this); // сделай комментарий
answer:```java // _api = new HelloWorldApi(this); // Создание нового экземпляра HelloWorldApi с текущим контекстом ```